14 January 2019

Be sure to read and carefully go through Chapter 1. NO CLASS NEXT WEEK: HULIDAY! WEEK AFTER (28 JAN): MEET IN SME 320.

ACOUSTICS

FLUIDS cannot support shear. (As opposed to solido). So, in fluids, sound is compressional ONLY.

Suppose we have a sound source in our fluid, oscillating at an amplitude of ξ . $fff \Rightarrow$ sound Sound is at frequency, f, and propagates at a speed c. Then the wavelength is A = 9f.

The distance between adjacent compressed and rarefield regions will be 1/2~ N "on the order of"

Thermal diffusivity & (assuming you remember what thermal diffusivity is ...)

The time required to equilibriate the temp. from the compressed to varefied regions is ~ 1/1K

Compare this to the time for one wavelong the of sound to pass : F ...

 $\mathbb{ZATIO}: \left(\frac{\partial^2}{\partial k}\right)(f) \sim \mathbb{R}^{HTO}$ of THERM. Equil. Time to the Acoustic wave period

So sound is adiabatic as fx< for in most cases. Losses due to imperfect collisions (i.e., viscosity is different)

Jound propagation concepts

So sound is adjubatic ... and the equation of state for an adjubatic fluid is $p \propto p^{d}$, $y = \begin{cases} 1.0 & \text{for water} \\ 1.4 & \text{for air} \\ 1.4 & \text{for air} \end{cases} = c_{py} \xrightarrow{\text{states for an adjubatic fluid is}} p_{\text{const. press.}}$ $p_{\text{ressure dusty}} \xrightarrow{\text{dusty}} y = \begin{cases} 1.0 & \text{for helium} \\ 1.4 & \text{for air} \\ 1.4 & \text{for air} \\ 1.4 & \text{for helium} \end{cases} = c_{py} \xrightarrow{\text{states for an adjubatic fluid is}} p_{\text{const. press.}}$ let's look at a compressed region of the fluid ... as the sound passes through. BEFORE: width of 2

14 Jan 2019 (2)

FTER: (compressed)
$$\frac{1}{2} - (\frac{\xi}{2}) - (\frac{\xi}{2}) = \frac{1}{2} - \xi$$
. To cross-sectional and
So the VOLUME change of this fluid powel is $\frac{\Delta V}{V} = \frac{(A)\xi}{(A)(\frac{V}{2})} = \frac{2\xi}{A}$
 $\frac{\Delta p}{p} = J \frac{\Delta V}{V} = J \frac{2\xi}{A} = J \Rightarrow p = (\frac{2\xi}{A})p$
b
change in pressure/ambient pressure
 $THIS = THRT$

Um... yeah, there is a point to this ... look:

New Yon's 2nd law:
$$F = m a$$

 $(xp)(A) = eA(\frac{1}{2})(\frac{\partial^2 g}{\partial t^2}) \Rightarrow xp = (e^{\frac{1}{2}})(\frac{\partial^2 g}{\partial t^2}) \Rightarrow p(2e^{\frac{\pi}{2}}) = e^{\frac{1}{2}}(\frac{\partial^2 g}{\partial t^2})$

Well, we can simplify a bit, but let's ASSUME THE ACOUSTIC WAVE IS HARMONIC: $\frac{\partial^2 q}{\partial c^2} = \omega^2 q$ where $\omega^2 = (\partial \pi f)^2$

$$\Rightarrow p g' \frac{2\epsilon}{N} = 2p N \pi^2 f^2 \epsilon \Rightarrow f^2 = \frac{p R}{\pi^2 N^2 \epsilon} \Rightarrow \omega^2 = k^2 c^2 \text{ where } k = \frac{2\pi}{N} \sim \text{the WAVENUMBER}$$

In an adiabatic fluid (with f<< for from above), sound propagates without dispersion. A non-dispersive acoustic wave propagates at the same speed regardless of frequency.

From Ch 1 (kinetic theory), $c = \sqrt{\frac{8p}{e}}$ We know $Ap = p\left(\frac{2k}{d}\right) \sim \delta^{t}k \xi = \frac{\omega}{c} \xi \delta^{t} \sim \delta^{t} \frac{\nabla}{c}$ where $\nabla \sim \text{ uibration velocity (particle velocity)}}{\nabla \equiv \omega \xi}$

The
$$\Delta p = (p \mathcal{X}) \stackrel{\mathcal{V}}{c} = (\mathcal{X} p)(c) \stackrel{\mathcal{V}}{c^2} = (\mathcal{X} p)(c) \stackrel{\mathcal{V}}{(1)} (\frac{e}{\mathcal{X} p}) = pcv \Rightarrow c p = pcv$$

"Is v Lagrangian or Eulerian" ~ SEE Westervelt paradox...

$$A = \rho C \sim A constic Impedance, Z$$

Ulu, well, remember electric circuiti? $\Delta p = Z v$

	ę v	a p			14 Jan 2019 3
PARTILLE DISPL E	- 7/w	a/w2 \$/w	<u>2)</u>		
PARTICLE VEC. V	E. w. 201 -	a/w 1/2	ALL OF	THIS IS FOR A	
PARTICLE ACCEL. Q	€· w² v. w	22	Simple	PLANE PROGRESS	SIVE
Sound pressure p	F w Z V Z	42 W2 10 ² /	Aci	NSTIC WAVE	
Sound intensity I	\$ ² w ² 7 v ² 7	a ² Z 1/2	-		
Sound energy density e	$\xi^2 \omega^2 \rho \nabla^2 \rho$	$\frac{a^2}{\omega^2}$ $\frac{1}{2}$	<u> </u>		
Sound power Par	$\xi^2 \omega^2 = A v^2 = A$	$\frac{a^2 2A}{\omega^2}$ $\frac{p^2 A}{2}$			
$P_{au} = I \cdot A$					
C L L L L	Parauti				
Jound intensity =	A				
	cross-sectional an	ea) SOUND : 1 acous	tù
			6	. 1	
			CROSS-SECT. A	eur 17	
A little more on accustics					
UNE - DIM WAVE EQUATION: UH	$C^2 U_{XX} = 0$ OR	$z_{11} - c^2 z_{11} = 0$			
"I want to know many!" =>	Fritz John				
But the solution to this eguate	on is $u(x_it) = f(x - ct)$) + g(x+ct)			
(If the wave is simulat,	then we can write the	solution as $u(x_it) = A$	$\cos \omega(t-\frac{x}{c})$		
J		amplified	e 200f speed of sound	i	
$= A \cos($	$\left(\frac{2\pi t}{T} - \frac{x}{A}\right) = A\cos\left(kx\right)$	-wt)	phate velocity	,	
Т	This period wave	$\operatorname{cnumber}: k \equiv \frac{1}{C} = \frac{2\pi}{\Lambda}$	-		
			u_{T}		
Wave reflection			-5	wave x=0	
NORMAL reflection =	=)				>+
OBLIQUE reflection			<u> </u>		
			up	wall	
(NCIDENT:	REFLECTION	(, X)			
$\mathcal{U}_{\mathcal{I}} = \mathcal{F}_{\mathcal{I}}(t - t)$	$(\hat{z}) \rightarrow U_{R} = F_{R}$	$(++\overline{c})$			
	wa-6 u - 2 17	- 2 35Ro So	x=0	$\mu = \mu (\mu)$	11 (04)-2
ON THE SOUNDING 1		3 30,20 . 30	u (v) c) u c	$a_{1}(t) = u_{1}(t)(t) + u_{2}(t)(t) + u_{3}(t)(t)(t) + u_{3}(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)($	T(1) = D
				$C_{1}(t) = T_{T}(t) + T_{T}(t)$	$t_{\mathbf{P}}(t) = 0$
				PLU - TILL	
$=) u(x,t) = F_{I}(t)$	$-\frac{2}{c}$) + $F_{R}(t+\frac{2}{c})$	$=F_{\pm}(t-z)$	*) — FI (++	춘) 👘	
(F the wome is a harring	ric sinuspid. then				
J			. 7		
μ($(x, t) = A \cos w$	$(+-\underline{\lambda}) - \cos \omega$	$\left(\left(+ \frac{1}{2} \right) \right) = 2A$	sin wet sin wax	~ STANDING

Research: 2 walls of perfect reflection, one at x=0, another at x = -L
In this consequent, we have
$$u(x,t)|_{t=0}^{-0}$$
 And $u(x,t)|_{t=0}^{-0}$ and $u(x,t)|_{t=0}^{-0}$ and $u(x,t)|_{t=0}^{-0}$ and $u(x,t)|_{t=0}^{-1}$
Use convex our relation from the one - wall case
 $u(x,t) = 2t$ and $u(x,t)|_{x=-\overline{t}} = 0 \Rightarrow \frac{u(t)}{t=} = r\pi$ for $ne_{1}^{1}(1, \frac{1}{t})$
 $u(x,t) = 2t$ and $u(x,t)|_{x=-\overline{t}} = 0 \Rightarrow \frac{u(t)}{t=} = r\pi$ for $ne_{1}^{1}(1, \frac{1}{t})$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) - A_{\pm} con w(t+\frac{1}{t}) = 0$
 $u(x,t) = A_{\pm} con w(t-\frac{1}{t}) + (A_{\pm} A_{\pm}) we det sin \frac{1}{t}$
 $u(x,t) = hody wink the reflection californit, $r = A_{\pm}(A_{\pm} - A_{\pm} - a_{\pm}$$

	Phan	e u	elai	h n	Fu	and	?	<i>c</i>	<u>_</u>	ى																			-
				.g •] "	uve	•	(¢ /	K2																			
									Puese	i veu	хітч	of 1	his u	UAUE	, cq	6 7	د ۲	∼ sp	ded C	FA	SIMP	<i>l</i> f 50	an n	um	6 /	n m	ED (A		
	_																												